
COP 3330: Classes In Java – Part 2 Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Classes In Java – Part 2

Inheritance and Polymorphism

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Classes In Java – Part 2 Page 2 © Dr. Mark Llewellyn

The Object Class and its Methods

• Every class in Java is descended from the
java.lang.Object class. If no inheritance is specified
when a class is defined, the superclass of the class is Object by
default.

• For example, the following two class declarations are equivalent:

public class Circle {

...

}

public class Circle extends Object {

...

}

equivalent

• Classes like String, Loan, GeometricObject are
implicitly subclasses of Object (as are all of the classes we
have constructed so far in this course).

• It is important to be familiar with the methods provided by the
Object class so that you can use them in your classes.

COP 3330: Classes In Java – Part 2 Page 3 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 2 Page 4 © Dr. Mark Llewellyn

The Object Class and its Methods

• For right now, we want to focus on two of these
methods, the toString and equals.

• The signature of the toString() method is:

public String toString()

• Invoking toString() on an object returns a string
that describes the object.

• By default, it returns a string consisting of the class
name of which the object is an instance, an at sign (@),
and the object’s memory address in hexadecimal.

• The following page, shows a slight modification to the
TestLoan class we wrote in the previous section to
illustrate the use of the toString() method.

COP 3330: Classes In Java – Part 2 Page 5 © Dr. Mark Llewellyn

Invoke the Object class toString() method on the

newly created loan object. Result shown below

in default format.

COP 3330: Classes In Java – Part 2 Page 6 © Dr. Mark Llewellyn

The Object Class and its Methods

• Obviously, this message is not very helpful or informative.

• Usually, you should override the toString method so that it
returns a descriptive string representation of the object. This is
what we did in the GeometricObject class as shown below:

/** Return a string representation of this object */

public String toString() {

return "created on " + dateCreated + "\ncolor: " + color +

" and filled: " + filled;

}

NOTE: You can also pass an object to invoke
System.out.println(object). This is equivalent to
invoking System.out.println(object.toString()).

COP 3330: Classes In Java – Part 2 Page 7 © Dr. Mark Llewellyn

The Object Class and its Methods

• The signature of the equals method is:

public boolean equals(Object o)

• This method test whether two objects are equal.

• The syntax for invoking this method is:

object1.equals(object2);

• The default implementation of the equals method in the Object
class is:

public boolean equals(Object obj) {

return (this == obj);

}

• This implementation checks whether two reference variables
point to the same object using the == operator. You should
override this method in your custom class to test whether two
distinct objects have the same content.

COP 3330: Classes In Java – Part 2 Page 8 © Dr. Mark Llewellyn

The Object Class and its Methods

• Using the Circle class as an example, let’s override

the Object class equals method in the Circle class

to determine if two circle objects are the same based on

their radius.

public boolean equals(Object obj) {

if (obj instanceof Circle) {

return radius == ((Circle)obj).radius;

}

else return false;

}
if (objectA instanceof classB)

will yield true if objectA can be upcast to objectB.

Inheritance allows one to design objects in terms of other existing

objects. This can often lead to objects which inherit from other

objects which, in turn, inherit from yet other objects. The instanceof

operator will yield true if the right operand appears anywhere up the

chain from which the left operand inherits.

COP 3330: Classes In Java – Part 2 Page 9 © Dr. Mark Llewellyn

The Object Class and its Methods

• The == comparison operator is used for comparing two

primitive data type values or for determining whether

two objects have the same references.

• The equals method is intended to test whether two

objects have the same contents, provided that the

method is modified (overridden) in the defining class of

the objects.

• The == operator is stronger than the equals method,

in that the == operator checks whether the two

reference variables refer to the same object.

COP 3330: Classes In Java – Part 2 Page 10 © Dr. Mark Llewellyn

The Object Class and its Methods

* * * Caution * * *

Using the signature equals(someClassName obj) (e.g.

equals(Circle c)) to override the equals method in a

subclass is a common mistake.

Why is this a mistake?

It’s a mistake because you are not overriding anything! The

signature is different from the one in the Object class, so you are

simply defining an overloaded method.

You should always use the form equals(Object obj) in

your custom classes.

COP 3330: Classes In Java – Part 2 Page 11 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

Since there is no equals()

method defined in class A3,

these invocations are all to
the equals() method in the

Object class.

COP 3330: Classes In Java – Part 2 Page 12 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

x = 4

x = 4

x = 2

a

b

c

Immediately after creation of objects

The first three lines of output

The first three lines of output
from the calls to the equals()

method indicate false. This is

because each of the objects is

referring to a different location in

memory, i.e., a different instance.

COP 3330: Classes In Java – Part 2 Page 13 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

x = 4

x = 4

x = 2

a

b

c

Immediately after execution of
the line c= b

The last line of output now
indicates a value of true

returned by the call to the
equals() method since the

objects b and c refer to the same

instance now.

The entire output

COP 3330: Classes In Java – Part 2 Page 14 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

These invocations are all to
the equals() method in the

A3Prime class which overrides

the same method in the Object

class.

This method overrides
the same method in the Object

class. Note the same signature

(see page 3).

COP 3330: Classes In Java – Part 2 Page 15 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

x = 4

x = 4

x = 2

a

b

c

Immediately after creation of objects

The first line of output from the
calls to the equals() method

indicate true since the values

a.x and b.x are the same. The

second and third lines indicate
false since neither a.b == c.x

nor does c.x == b.x.

The first three lines of output

COP 3330: Classes In Java – Part 2 Page 16 © Dr. Mark Llewellyn

More On Overriding/Overloading And The Object Class

x = 4

x = 4

x = 2

a

b

c

Immediately after execution of
the line c= b

The last line of output now
indicates a value of true

returned by the call to the
equals() method since the

objects b and c refer to the same

instance now, so b.x == c.x.

The entire output

COP 3330: Classes In Java – Part 2 Page 17 © Dr. Mark Llewellyn

Polymorphism and Dynamic Binding

• Three of the most important concepts of object-

oriented programming are encapsulation,

inheritance, and polymorphism.

• We’ve already seen the first two concepts in

some detail (we’ll continue to use and expand on

these as we continue through the semester), but

now we want to focus for a bit on

polymorphism.

COP 3330: Classes In Java – Part 2 Page 18 © Dr. Mark Llewellyn

Polymorphism and Dynamic Binding

• Before we look in detail at polymorphism, we need to

define two terms: subtype and supertype.

• A class defines a type. A type defined by a subclass is

called a subtype and a class defined by its superclass is

called a supertype.

• All variables must have a declared type. The type of a

variable is called its declared type.

• A variable of a reference type can hold a null value or

a reference to an object (an object is an instance of a

class).

COP 3330: Classes In Java – Part 2 Page 19 © Dr. Mark Llewellyn

Polymorphism and Dynamic Binding

• We’ve seen that an inheritance relationship enables a
subclass to inherit features from its superclass with
additional new features peculiar to the subclass.

• A subclass is a specialization of its superclass; every
instance of a subclass is an instance of its superclass,
but not vice versa.

– For example, every circle is an object, but not every object is
a circle.

• Therefore, you can always pass an instance of a
subclass to a parameter of its superclass type.

• Let’s look at the following example.

COP 3330: Classes In Java – Part 2 Page 20 © Dr. Mark Llewellyn

PolymorphismDemo

Example

What will the output of this

program be?

COP 3330: Classes In Java – Part 2 Page 21 © Dr. Mark Llewellyn

PolymorphismDemo

Example

Why does the output

from this program look

the way it does?

Read on to find out!

COP 3330: Classes In Java – Part 2 Page 22 © Dr. Mark Llewellyn

Discussion of the Example

• Method m takes a parameter of the Object type. You

can invoke m with any object (e.g., new

GraduateStudentObject(), new

StudentObject(), new PersonObject, and

new Object(), as shown).

• An object of a subclass can be used wherever its

superclass object is required. This is commonly known

as polymorphism (from a Greek work meaning “many

forms”).

• In simple terms, polymorphism means that a variable of

supertype can refer to a subtype object.

COP 3330: Classes In Java – Part 2 Page 23 © Dr. Mark Llewellyn

Discussion of the Example

• When the method m(Object x) is executed, the

argument x’s toString method is invoked, x may be an

instance of GraduateStudentObject,

StudentObject, PersonObject, or Object.

Classes GraduateStudentObject,

StudentObject, PersonObject, and Object

have their own implementations of the toString method.

• Which implementation is used will be determined

dynamically by the Java Virtual Machine (JVM) at runtime.

This capability is known as dynamic binding.

• Let’s look more closely at dynamic binding for a bit:

COP 3330: Classes In Java – Part 2 Page 24 © Dr. Mark Llewellyn

Dynamic Binding

• Suppose an object o is an instance of classes C1, C2,

…,Cn-1, and Cn, where C1 is a subclass of C2, C2 is a

subclass of C3, …, Cn-1 is a subclass of Cn.

• Thus, Cn is the most general class, and C1 the most

specific class.

Cn Cn-1 C2 C1
…

If o is an instance of C1, o is an instance of C2, C3, . . . Cn-1, Cn

COP 3330: Classes In Java – Part 2 Page 25 © Dr. Mark Llewellyn

Dynamic Binding

• If the object o invokes

a method p, the JVM searches the implementation for

the method p in C1, C2, …,Cn-1, and Cn, in this

order until it is found.

• Once an implementation is found, the search stops, and

the first-found implementation is invoked.

• Looking back at the example, when m(new

GraduateStudent()) is invoked, the toString

method defined in the Student class is used.

COP 3330: Classes In Java – Part 2 Page 26 © Dr. Mark Llewellyn

Dynamic Binding

• Matching a method signature and binding a method
implementation are two separate issues.

• The declared type of the reference variable decides
which method to match at compile time. The compiler
finds a matching method according to parameter type,
number of parameters, and order of the parameters at
compile time.

• A method may be implemented in several subclasses.
The JVM dynamically binds the implementation of the
method at runtime, decided by the actual class of the
object referenced by the variable.

COP 3330: Classes In Java – Part 2 Page 27 © Dr. Mark Llewellyn

Dynamic Binding

• Dynamic binding enables a new class to be loaded on the fly
without recompilation. There is no need for developers to
create, and for users to install, major new software versions.
New features can be incorporated transparently as needed.

• For example, suppose that we placed the classes
PolymorphismDemo, GraduateStudentObject,

StudentObject, and PersonObject in four separate
files. If we modified the GraduateStudentObject

class as follows:

class GraduateStudentObject extends StudentObject {

public String toString() {

return “Graduate Student”;

}

}

COP 3330: Classes In Java – Part 2 Page 28 © Dr. Mark Llewellyn

Dynamic Binding

• We now have a new version of
GraduateStudentObject with a new

toString method, but we don’t have to recompile

the classes PolymorphismDemo,

StudentObject, or PersonObject.

• When you run PolymorphismDemo, the JVM

dynamically binds the new toString method for the

object of GraduateStudentObject when

executing m(new GraduateStudentObject

()).

• Try this yourself with these classes.

COP 3330: Classes In Java – Part 2 Page 29 © Dr. Mark Llewellyn

Dynamic Binding

• Polymorphism allows methods to be used generically for a

wide range of arguments.

• This is known as generic programming.

• If a method’s parameter type is a superclass (e.g., Object),

you may pass to this method an object of any of the
parameter’s subclasses (e.g., Student or String).

• When an object (e.g., a Student object or a String

object) is used in the method, the particular implementation
of the method of the object invoked (e.g., toString) is

determined dynamically.

COP 3330: Classes In Java – Part 2 Page 30 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• We’ve already used casting to convert variables of one primitive

type to another primitive type. Casting can also be used to

convert an object of one class type to another within an

inheritance hierarchy.

• In the polymorphism example we just covered, the statement:

m(new StudentObject ());

assigns the object new StudentObject () to a parameter

of the

Object type. This statement is equivalent to:

Object o = new StudentObject (); //implicit casting

m(o);

COP 3330: Classes In Java – Part 2 Page 31 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator
• The statement

Object o = new StudentObject ();

is known as implicit casting. It is legal because an instance of

Student is automatically an instance of Object.

• Suppose you want to assign the object reference o to a variable of

the Student type using the following statement:

StudentObject b = o;

• In this case a compilation error would occur. Why does the

statement at the top of this page work while the last statement does
not?

– The reason is that a StudentObject object is always an

instance of Object, but an Object is not necessarily an

instance of StudentObject.

COP 3330: Classes In Java – Part 2 Page 32 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• Even though you can see that o is really a StudentObject

object, the compiler is not clever enough to know it. To tell
the compiler that o is a StudentObject object, use an

explicit casting.

• The syntax for an explicit casting of reference types is similar

to the one used for casting among primitive data types.

Enclose the target object type in parentheses and place it

before the object to be cast, as follows:

StudentObject b = (StudentObject)o; //explicit casting

• It is always possible to cast an instance of a subclass to a

variable of a superclass (this is known as upcasting), because

an instance of a subclass is always an instance of its
superclass.

COP 3330: Classes In Java – Part 2 Page 33 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• When casting an instance of a superclass to a variable

of its subclass (known as downcasting), explicit casting

must be used to confirm your intention to the compiler
with the (SubclassName) cast notation.

• For downcasting to be successful, you must make sure

that the object to be cast is an instance of the subclass.

If the superclass object is not an instance of the
subclass, a runtime ClassCastException occurs.

– For example, if an object is not an instance of
StudentObject, it cannot be cast into a variable of

StudentObject.

COP 3330: Classes In Java – Part 2 Page 34 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• It is a good practice, therefore, to ensure that the object is an

instance of another object before attempting a casting.

• This can be accomplished by using the instanceof operator.

Object myObject = new Circle();

. . . //some lines of code

//perform casting if myObject is an instance of Circle

if (myObject instanceof Circle) {

System.out.println(“The circle diameter is “ +

((Circle)myObject).getDiameter());

. . .

}

COP 3330: Classes In Java – Part 2 Page 35 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• Why is casting necessary at all in this example?

• Variable myObject is declared Object. The declared type

decides which method to match at compile time. Using
myObject.getDiameter() would cause a compilation

error, because the Object class does not have the

getDiameter method. The compiler cannot find a match for

myObject.getDiameter(). So, it is necessary to cast

myObject into the Circle type to tell the compiler that

myObject is also an instance of Circle.

• Why not just declare myObject as a Circle type in the first

place?

– To enable generic programming, it is a good practice to declare a variable

with a supertype, which can accept a value of any subtype.

COP 3330: Classes In Java – Part 2 Page 36 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• To help you understand casting a bit

better, you might consider the analogy

of fruit, apple, and orange with the
Fruit class as the superclass for

Apple and Orange. An apple is a

fruit, so you can always safely assign
an instance of Apple to a variable for

Fruit. However, a fruit is not

necessarily an apple, so you have to

use explicit casting to assign an
instance of Fruit to a variable of

Apple.

Fruit

Apple Orange

COP 3330: Classes In Java – Part 2 Page 37 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• A final example may also help to clarify casting objects.

• The program on the next page creates two objects, a

circle and a rectangle, and invokes the
displayObject method to display them.

• The displayObject method displays the area and

diameter if the object is a circle and the area if the

object is a rectangle.

• Be sure that you really understand this example.

COP 3330: Classes In Java – Part 2 Page 38 © Dr. Mark Llewellyn

This method is an example of generic

programming. It can be invoked by

passing any instance of Object.

COP 3330: Classes In Java – Part 2 Page 39 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 2 Page 40 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• The program uses implicit casting to assign a Circle object to
object1 and a Rectangle object to object2.

• In the displayObject method, explicit casting is used to cast
the object to Circle if the object is an instance of Circle,
and the methods getArea and getDiameter are used to
display the area and diameter of the circle.

• Since casting can only be done when the source object is an
instance of the target class, the code uses the instanceof

operator to ensure that the source object is an instance of the
target class before performing the casting.

• Explicit casting to Circle and Rectangle is necessary
because the getArea and getDiameter methods are not
available in the Object class.

COP 3330: Classes In Java – Part 2 Page 41 © Dr. Mark Llewellyn

Casting Objects and the instanceof Operator

• A word of caution regarding the casting operation…

the precedence of the object member access operator
(the period) is higher than the casting operator. You
must use parentheses to ensure that the casting is done
before the . operation, as in:

((Circle)object).getArea());

and not: (Circle)object.getArea();

The method getArea() is not

defined for the type Object

