COP 3330: Object-Oriented Programming
Summer 2011

Classes In Java — Part 2
Inheritance and Polymorphism

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2011

Department of Electrical Engineering and Computer Science
Computer Science Division
University of Central Florida

COP 3330: Classes In Java — Part 2 Page 1 © Dr. Mark Llewellyn




The Object Class and its Methods

« Every class in Java IS descended from the
java.lang.Object class. If no inheritance Is specified
when a class is defined, the superclass of the class is Object by
default.

» For example, the following two class declarations are equivalent:

public class Circle { public class Circle extends Object {

} }

« Classes like String, Loan, GeometricObject are
implicitly subclasses of Object (as are all of the classes we
have constructed so far in this course).

« It is important to be familiar with the methods provided by the
Object class so that you can use them in your classes.

’

COP 3330: Classes In Java — Part 2 Page 2 © Dr. Mark Llewellyn g").




=

Method Summary

protected
Chject

clone()

Creates and returns a copy of this object.

boolean

equals (Cbject obj)
Indicates whether some other object is "equal to" this one.

protected
woid

finalize()
Called by the garbage collector on an object when garbage collection determines that there are no more references to the object.

Claz=<?>

getClass ()
Returns the runtime class of this object.

hashCode ()
Returns a hash code value for the object.

woid

notify ()
Wakes up a single thread that is waiting on this object's monitor.

woid

notifyall ()
Wakes up all threads that are waiting on this object's monitor.

dtring

toString()
Returns a string representation of the object.

woid

wait()

Causes the current thread to wait until another thread invokes the nocifyv () method or the nocify2ll () method for this object.

woid

walt(long timeout)
Causes the current thread to wait until either another thread invokes the nocifyv () method or the nocify211 () method for this object, or a
specified amount of time has elapsed.

woid

wait (long timeout, int nanos)
Causes the current thread to wait until another thread invokes the notifyv () method or the nocifyzail () method for this object, or some
other thread interrupts the current thread, or a certain amount of real time has elapsed.

COP 3330: Classes In Java — Part 2 Page 3 © Dr. Mark Llewellyn c




The Object Class and its Methods

For right now, we want to focus on two of these
methods, the toStringand equals.

The signature of the toString () method Is:
public String toString()

Invoking toString () on an object returns a string
that describes the object.

By default, it returns a string consisting of the class
name of which the object is an instance, an at sign (@),
and the object’s memory address in hexadecimal.

The following page, shows a slight modification to the
TestLoan class we wrote In the previous section to
Illustrate the use of the toString () method.

’

COP 3330: Classes In Java — Part 2 Page 4 © Dr. Mark Llewellyn g").




= Java - Classes In Java/src/TestloanClass,java - Eclipse

File Edit 5Socurce Refactor Navigate 5Search Project Bun Window Help
il = WO~  HEr @2 5~
b« & v %0 O - -

1| Bikejava )| BikeShop.java 1J] MyBikeShop.java |J] TestLoanClass,java &2 |J] Loan.java
System.out.print ("Enter number of wears as an integer: ");
int mumberOfYears = input.nextInt ()
Enter loan ampunt
System.ocuf.print ("Enter loan amount, for example 120000.895: "):
double loanfmount = input.nextDouble()

=3

— — SR
= e . =T ~lEaet
bl oo Llhcal  URS = b b

Loan loan = new Loan(amnuallnterestBEate, numberOf¥ears, loanfimount) ;
System.out.format ("\n" + loan.toString() + "\m\n"):;

Format to keep two digits after

double monthlyPayment = Invoke the Obiject class toString() method on the

newly created loan object. Result shown below

in default format.
Writable Smart Insert

1
Loan@laT758ch <

The loan was created on Tha Jun 02 15:37:43 EDT 2011
The monthly payment is £1780.52
The total payment will be £ Z213663.18

COP 3330: Classes In Java — Part 2 Page 5 . Mark Llewellyn




The Object Class and its Methods

* Obviously, this message is not very helpful or informative.

« Usually, you should override the toString method so that it

returns a descriptive string representation of the object. This is
what we did in the GeometricObject class as shown below:

/** Return a string representation of this object */
public String toString() {

" and filled: " 4+ filled;
}

return '"created on " + dateCreated + "\ncolor: " + color +

NOTE: You can also pass an object to

Invoke

System.out.println (object). This Is equivalent to
Invoking System.out.println (object.toString()) .

COP 3330: Classes In Java — Part 2 Page 6 © Dr. Mark Llewellyn

7
()
S,




The Object Class and its Methods

« The signature of the equals method is:
public boolean equals (Object 0)
« This method test whether two objects are equal.
» The syntax for invoking this method is:
objectl.equals (object2);

» The default implementation of the equals method in the Object
class is:

public boolean equals (Object obj) {
return (this == obj);

}

« This implementation checks whether two reference variables
point to the same object using the == operator. You should
override this method in your custom class to test whether two
distinct objects have the same content.

¢

COP 3330: Classes In Java — Part 2 Page 7 © Dr. Mark Llewellyn g").




The Object Class and its Methods

e Using the Circle class as an example, let’s override
the Object class equals method in the Circle class

to determine if two circle objects are the same based on

their radius.

public boolean equals (Object obj) {
1f (obj instancgpf Circle) {
return radiusg == ((Circle)obj) .radius;

}

else return falsge;

} if (objectA instanceof classB)
will yield true if objectA can be upcast to objectB.

Inheritance allows one to design objects in terms of other existing
objects. This can often lead to objects which inherit from other
objects which, in turn, inherit from yet other objects. The instanceof
operator will yield true if the right operand appears anywhere up the
chain from which the left operand inherits.

”
COP 3330: Classes In Java — Part 2 Page 8 © Dr. Mark Llewellyn gjj




The Object Class and its Methods

« The == comparison operator Is used for comparing two

primitive data type values or for determining whether
two objects have the same references.

 The equals method Is intended to test whether two

objects have the same contents, provided that the
method is modified (overridden) in the defining class of
the objects.

e The == operator Is stronger than the equals method,
In that the == operator checks whether the two
reference variables refer to the same object.

’

COP 3330:; Classes In Java — Part 2 Page 9 © Dr. Mark Llewellyn g").




The Object Class and its Methods

*** Caution* * *

Using the signature equals (someClassName ob7j)

equals (Circle c) ) to override the equals method In a

subclass is a common mistake.

Why is this a mistake?

(e.g.

It’s a mistake because you are not overriding anything!

signature Is different from the one in the Object class, so you are

simply defining an overloaded method.

You should always use the form equals (Object obj) In

your custom classes.

The

,

COP 3330: Classes In Java — Part 2 Page 10 © Dr. Mark Llewellyn

NV,




More On Overriding/Overloading And The Object Class

—

J| TestPolymorphismCast (‘m *A3.java Eﬂ\m A3Prime,java 1 % i

f/Class to demonstrate use of Object class equals() method

f/HOTE: Object class equals() method i=s based on memory addresses

public class 43 |{
private int x; Since there is no equals ()

. . . method defined in class A3,
public A3(int v) { X = v} these invocations are all to

the equals () method in the
public static veoid main(String args[]){ Object class.

L3 a = new L3 (4):
23 b = new L3(4):
L3 c = new A3(2):

System.cut.println("a equals b iz: " + a.equals(b)):
System.cut.println("a equals c isz: " + a.equals(c)):
System.ocut.println("c equals b is: " + c.eqgual=s(b)):
c = by /J/reassign c to reference b

System.cut.println("c equals b iz: " + c.equals(b)):

COP 3330: Classes In Java — Part 2 Page 11 © Dr. Mark Llewellyn




More On Overriding/Overloading And The Object Class

/ =l Console &7

<terminated> A3 [Java Application] C\Prograr

% %| G EEHE

a equals b is: fals=e

b a equals c is: fals=e
c equals b is: false
The first three lines of output
C

The first three lines of output

from the calls to the equals ()
Immediately after creation of objects method indicate false. Thisis

because each of the objects is
referring to a different location in
memory, i.e., a different instance.

COP 3330: Classes In Java — Part 2 Page 12 © Dr. Mark Llewellyn g’)?




More On Overriding/Overloading And The Object Class

-

C X =2

. EER

Immediately after execution of
the line c= b

£l Console @3
<terminated> A3 [Java Application] C:A\Progr

X % | G RE[EEE
= * [F°] -
a eqgquals b i=: fal=e
a eguals c i=: fal=e
c equals b is: fal=se
c egquals b i=: true

The entire output

The last line of output now
indicates a value of true

returned by the call to the

equals () method since the
objects b and c refer to the same
instance now.

COP 3330: Classes In Java — Part 2

Page 13

© Dr. Mark Llewellyn




More On Overriding/Overloading And
¥ A3ja

n=e of overriding the

J] PolymorphismDemo.jav |J] TestPolymorphismCast

JAC1la=ss to demonstratce
|
palxlic class ASPrime {

—_—

The overridden

T e
L I

method i=s ba=sed on

private int =x;
public AZPrime (int v)

{ = Wl

o public boolean eguals=s (Object obj) {
if (ob] instanceof L3Prime) {
retorn thi=s.x = ([(A3Prime)lobj) .x:;
H

el=se retorn fal=se:

public =tatic
L3Prime a
L3Prime b
L3Prime c

woid main(String arg=s[]1) 4
= new L3IPrime(4):

new L3IPrime (4)
new L3IPrime (2)

Fr

—

The Object Class

[J] *A3Prime.java 3

cla=s=s eqguals ()

>
wa

method
n the object
This method overrides
the same method in the Object
class. Note the same signature

(see page 3).

These invocations are all to

the equals () method in the
A3Prime class which overrides
the same method in the Object
class.

Svten.ocut.println("a egual=s b i=: + a.equal=s(k)):
Syvzten.ocut.println("a eguals o iz: " 4+ a.eqgual=s({c)):
Syvzten.ocut.println("c eguals b iz: " 4+ c.egual=s({b)):
o = b

SvEtem.cut.println{"c egual=s b i=: " 4+ c.ecuals(b)):

COP 3330: Classes In Java — Part 2 Page 14

© Dr. Mark Llewellyn




More On Overriding/Overloading And The Object Class

] Console &3
<terminated> A3Prime [Java Applicat

® % | G cE[EE

a
= - [ T
a egqual=s B i=: truese
a eguals o i=z: fal=e
b c eguals kb is: false
The first three lines of output
C . .
The first line of output from the

calls to the equals () method
indicate true since the values
Immediately after creation of objects a.x and b.x are the same. The

second and third lines indicate
false since neither a.b == c.x
nor does c.x == b. x.

COP 3330: Classes In Java — Part 2 Page 15 © Dr. Mark Llewellyn g’)?




More On Overriding/Overloading And The Object Class

-

C X =2

. EER

Immediately after execution of
the line c= b

£l Conscle &3
<terminated> A3Prime [Java Applicat

% % | G &H[EEF)
= - =':"r'
a eguals b is= True
a eguals o is= fal=e
o egquals b is= Ffal=se
o eguals b is= True

The entire output

The last line of output now
indicates a value of true

returned by the call to the

equals () method since the
objects b and c refer to the same
instance now, SOb.x == c.x.

COP 3330: Classes In Java — Part 2

Page 16

© Dr. Mark Llewellyn




Polymorphism and Dynamic Binding

* Three of the most important concepts of object-
oriented programming are encapsulation,
Inheritance, and polymorphism.

« We’ve already seen the first two concepts In
some detail (we’ll continue to use and expand on
these as we continue through the semester), but
now we want to focus for a bit on
polymorphism.

COP 3330: Classes In Java - Part 2 Page 17 © Dr. Mark Llewellyn g").




Polymorphism and Dynamic Binding

Before we look in detail at polymorphism, we need to
define two terms: subtype and supertype.

A class defines a type. A type defined by a subclass iIs
called a subtype and a class defined by its superclass is
called a supertype.

All variables must have a declared type. The type of a
variable is called its declared type.

A variable of a reference type can hold a null value or
a reference to an object (an object iIs an instance of a
class).

COP 3330: Classes In Java — Part 2 Page 18 © Dr. Mark Llewellyn




Polymorphism and Dynamic Binding

We’ve seen that an inheritance relationship enables a
subclass to Inherit features from its superclass with
additional new features peculiar to the subclass.

A subclass Is a specialization of its superclass; every
Instance of a subclass Is an instance of its superclass,
but not vice versa.

— For example, every circle is an object, but not every object is
a circle.

Therefore, you can always pass an iInstance of a
subclass to a parameter of its superclass type.

Let’s look at the following example.

’

COP 3330: Classes In Java - Part 2 Page 19 © Dr. Mark Llewellyn g").




e

-~
4] MyBikeShop.java ﬂIl TestLoanClass.java ﬂIl PolymorphismDemo.jav &5 3

H

H

PSS

YA

poblic class PolyvmorphismDemo {

palxlic static vold main(Stringl]

minew GraduateStudentObject () )
mi{new StudentObiject()):

minew PerszonCkbiscti()):

mi{new Cbject()):

¥Y///end main method

pokbklic =tatic vold m{Cbhject =) {
Svestem.oubt.primtln(x.tcoString ()

Y/Srend method m

frend class GraduateStudentObjecth

pobklic String toString() 1
retorn "StudentObhject™

Y rsend toString method

'end cla=ss StudentObhject

clas=zs PersonCbhject extend=s Chbject {

poblic String toString() {

>

arg=s) 1

PolymorphismDemo
Example

) -

class GraduateStudentlObhject extend=s StudentObject {

clas=s StudentObject extend=s PersonChject {

retorn "PersonObject™;
}/Send toString method

'end cla=s PersonCbhject

What will the output of this
program be?

COP 3330: Classes In Java — Part 2 Page 20

© Dr. Mark Llewellyn




- Java - Eclipse

PolymorphismDemo
Example

File Edit MNawigate 5Search Project Bun  Window Help

L=':j'*r ﬁvﬁv%v
# @ - 5 P
- vﬂ:l{::lv -

[Z: Problems | @ Javadoc | [, Declaration | Bl Console &3 -8
=
<terminated> PolymerphismDemo [Java Application] C:\Program Files\Java'red'\bin g, Why does the OUtpUt

E X %| G REEE 2 B3 from this program look
StudentObject the way it does?

Studentlbject
PersonCbject
java.lang.0bject@2304bl

Read on to find out!

COP 3330: Classes In Java — Part 2 © Dr. Mark Llewellyn




Discussion of the Example

» Method m takes a parameter of the Object type. You
can invoke m with any object (e.g., new
GraduateStudentObject (), new
StudentObject (), new PersonObject, and
new Object (), asshown).

 An object of a subclass can be used wherever its
superclass object is required. This is commonly known
as polymorphism (from a Greek work meaning “many
forms”).

 In simple terms, polymorphism means that a variable of
supertype can refer to a subtype object.

#
COP 3330: Classes In Java — Part 2 Page 22 © Dr. Mark Llewellyn @j




Discussion of the Example

* When the method m (Object x) IS executed, the
argument x’s toString method Is invoked, x may be an
Instance of GraduateStudentObject,
StudentObject, PersonObject, or Object.
Classes GraduateStudentObject,
StudentObject, PersonObject, and Object
have their own implementations of the toSt ring method.

 Which implementation 1is used will be determined
dynamically by the Java Virtual Machine (JVM) at runtime.
This capability is known as dynamic binding.

» Let’s look more closely at dynamic binding for a bit:

”
COP 3330: Classes In Java — Part 2 Page 23 © Dr. Mark Llewellyn gjj




Dynamic Binding

 Suppose an object o Is an instance of classes C,, C,,
..,C._,, and C_, where C,lsa subclassof C,, C,Isa
subclassof C;, .., C,_;Isasubclassof C_.

e Thus, C_ Is the most general class, and C, the most
specific class.

co K em K= e K e

If o is an instance of C,, oisaninstanceofc,, Cc;, . . . C,_,, C,

#
COP 3330: Classes In Java — Part 2 Page 24 © Dr. Mark Llewellyn @j




Dynamic Binding

If the object ® Invokes
a method p, the JVM searches the implementation for
the method p in ¢c,, C,, ..,C._,, and C_, In this
order until it is found.

Once an implementation is found, the search stops, and
the first-found implementation is invoked.

Looking back at the example, when m(new
GraduateStudent () ) IS invoked, the toString
method defined in the Student class Is used.

”
COP 3330: Classes In Java — Part 2 Page 25 © Dr. Mark Llewellyn gjj




Dynamic Binding

« Matching a method signature and binding a method
Implementation are two separate Issues.

« The declared type of the reference variable decides
which method to match at compile time. The compiler
finds a matching method according to parameter type,
number of parameters, and order of the parameters at
compile time.

* A method may be implemented in several subclasses.
The JVM dynamically binds the implementation of the
method at runtime, decided by the actual class of the
object referenced by the variable.

¢

COP 3330: Classes In Java - Part 2 Page 26 © Dr. Mark Llewellyn g").




Dynamic Binding

« Dynamic binding enables a new class to be loaded on the fly
without recompilation. There Is no need for developers to
create, and for users to install, major new software versions.
New features can be incorporated transparently as needed.

 For example, suppose that we placed the classes
PolymorphismDemo, GraduateStudentObject,
StudentObject, and PersonObject In four separate
files. If we modified the GraduateStudentObject

class as follows:

class GraduateStudentObject extends StudentObject {
public String toString () {
return “Graduate Student”;

}

”
COP 3330: Classes In Java — Part 2 Page 27 © Dr. Mark Llewellyn gjj




Dynamic Binding

e We Nnow have a new version of

GraduateStudentObject with a new
toString method, but we don’t have to recompile
the classes PolymorphismDemo,
StudentObject, Or PersonObject.

« When you run PolymorphismDemo, the JVM
dynamically binds the new toString method for the
object of GraduateStudentObject  when
executing m(new GraduateStudentObject
()) .

» Try this yourself with these classes.

”
COP 3330: Classes In Java — Part 2 Page 28 © Dr. Mark Llewellyn gjj




Dynamic Binding

Polymorphism allows methods to be used generically for a
wide range of arguments.

This is known as generic programming.

If @ method’s parameter type is a superclass (e.g., Object),

you may pass to this method an object of any of the
parameter’s subclasses (e.g., Student or String).

When an object (e.g., a Student object or a String

object) Is used in the method, the particular implementation
of the method of the object invoked (e.g., toString) IS

determined dynamically.

”
COP 3330: Classes In Java — Part 2 Page 29 © Dr. Mark Llewellyn gjj




Casting Objects and the instanceof Operator

« We’ve already used casting to convert variables of one primitive
type to another primitive type. Casting can also be used to

convert an object of one class type to another within an
Inheritance hierarchy.

* In the polymorphism example we just covered, the statement:
m(new StudentObject ());

assigns the object new StudentObject () to a parameter
of the

Object type. This statement is equivalent to:

Object o = new StudentObject ();

//implicit casting

m(o) ;

#
COP 3330: Classes In Java — Part 2 Page 30 © Dr. Mark Llewellyn @j




Casting Objects and the instanceof Operator
« The statement

Object o = new StudentObject ();

IS known as implicit casting. It is legal because an instance of
Student Is automatically an instance of Object.

« Suppose you want to assign the object reference o to a variable of
the Student type using the following statement:

StudentObject b = o;

* In this case a compilation error would occur. Why does the
statement at the top of this page work while the last statement does

not?

— The reason Is that a StudentObject object is always an
Instance of Object, but an Object IS not necessarily an

Instance of StudentObject.

#
COP 3330: Classes In Java — Part 2 Page 31 © Dr. Mark Llewellyn @j




Casting Objects and the instanceof Operator

« Even though you can see that o Is really a StudentObject
object, the compiler is not clever enough to know it. To tell
the compiler that o Is a StudentObject object, use an
explicit casting.

* The syntax for an explicit casting of reference types is similar
to the one used for casting among primitive data types.
Enclose the target object type in parentheses and place it
before the object to be cast, as follows:

StudentObject b = (StudentObject)o; //explicit casting

|t Is always possible to cast an instance of a subclass to a
variable of a superclass (this is known as upcasting), because

an instance of a subclass is always an instance of its
superclass. ;

COP 3330: Classes In Java — Part 2 Page 32 © Dr. Mark Llewellyn g").




Casting Objects and the instanceof Operator

When casting an instance of a superclass to a variable
of its subclass (known as downcasting), explicit casting
must be used to confirm your intention to the compiler
with the (SubclassName) cast notation.

For downcasting to be successful, you must make sure
that the object to be cast Is an instance of the subclass.
If the superclass object is not an instance of the
subclass, a runtime ClassCastException OCCUTS.

— For example, if an object i1s not an instance of
StudentObject, It cannot be cast into a variable of
StudentObject.

’

COP 3330: Classes In Java — Part 2 Page 33 © Dr. Mark Llewellyn g").




Casting Objects and the instanceof Operator

« It Is a good practice, therefore, to ensure that the object is an

Instance of another object before attempting a casting.

« This can be accomplished by using the instanceof operator.

Object myObject = new Circle();
. //some lines of code
//perform casting if myObject is an instance of Circle
1f (myObject instanceof Circle) {
System.out.println(“"The circle diameter is ™ +

((Circle)myObject) .getDiameter()) ;

COP 3330: Classes In Java — Part 2 Page 34 © Dr. Mark Llewellyn




Casting Objects and the instanceof Operator

* Why is casting necessary at all in this example?

« Variable myObject IS declared Object. The declared type
decides which method to match at compile time. Using
myObject.getDiameter () would cause a compilation
error, because the Object class does not have the
getDiameter method. The compiler cannot find a match for
myObject.getDiameter (). SO0, It IS necessary to cast
myObject Into the Circle type to tell the compiler that
myObject IS alsoan instance of Circle.

« Why not just declare myObject as a Circle type in the first
place?

— To enable generic programming, it is a good practice to declare a variable
with a supertype, which can accept a value of any subtype.

”
COP 3330: Classes In Java — Part 2 Page 35 © Dr. Mark Llewellyn gjj




Casting Objects and the instanceof Operator

« To help you understand casting a bit
better, you might consider the analogy
of fruit, apple, and orange with the
Fruit class as the superclass for Fruit
Apple and Orange. An apple Is a
fruit, so you can always safely assign \
an instance of Apple to a variable for
Fruit. However, a fruit Is not
necessarily an apple, so you have to
use explicit casting to assign an
Instance of Fruit to a variable of

Apple.

Apple Orange

”
COP 3330: Classes In Java — Part 2 Page 36 © Dr. Mark Llewellyn gjj




Casting Objects and the instanceof Operator

A final example may also help to clarify casting objects.

« The program on the next page creates two objects, a
circlee and a rectangle, and invokes the
displayObject method to display them.

 The displayObject method displays the area and
diameter If the object Is a circle and the area if the
object Is a rectangle.

« Be sure that you really understand this example.

”
COP 3330: Classes In Java — Part 2 Page 37 © Dr. Mark Llewellyn gjj




x>

-
[ MyBikeShop.java ﬂII TestLoanClass.)ava ﬂII PolymorphismDemo.jav rm TestPolymorphismCast 22
public clas=s TestPolvmorphismCasting {

This method is an example of generic
programming. It can be invoked by

= public static void main (String[[] args i passing any instance of Object.

S/ Declare and initialize two objegts

Syestem.ocut.println ("Creating object 1 - the circle:™);
Chiject objectl = new Circle(l):
System. out.println ("\nCreating olfject 2 - the rectangle:™):

Chject objectZ = new EBectangle(l/ 1)
SO Display circle and rectangle

Syvstem.out.println ("\nYnDisplaying information about object 1 - the circle:"™);
displavObject{objectl) ;
Svztem.cut.println ("\nDisplaving information about okbject 2 — the retangle:");

displavibject(obiject) ;
y//end main method

- S#*% B method for displaving an object #*/F ‘\\\
= public static void displavObject (Cbiject object) |
if (object in=tanceof Circle) {
Syvstem.ocut.println ("The circle area i=s " +
[(Circle)object) .gethrea()) s
Syestem.out.println ("The circle diameter iz " +
([ (Circle)obiject) .getDiametexr())
Y Send if
el=ze if (object instanceof Rectangle) {
Syestem.out.println ("The rectangle area is " +
([ (Rectangle)object) .gethreal() ) s

Y/ end if 4///
\ } i ."'E:-n-:l method A3 %&Ff

}//end class TestPolymorphismCasting
e 1

4

COP 3330: Classes In Java — Part 2 Page 38 © Dr. Mark Llewellyn




|i—

File Edit Mawvigate 5Search Project Bun Window Help
B0~ Q- WO SO - 55 (B 7ave)
> 5l v¥m Gy o

I f— 4
[%¢ Problems (@ lavadoc (@. Declaration (E Console &3 =
<terminated> TestPolymorphismCasting [Java Application] C:\Pregram Files'Java'yreb\bin'javaw.exe (Jun 2, 2(

X % |G RE[E]S) =+ B -3 ~
Creating object 1 - the circle: -

In GeometricChject default constructor method
In radiu=s =specific Circle constructor.

Creating object 2 - the rectangle:
In GeometricObiject default constructor method
In length and width =specific Rectangle constructor.

Di=zplayving information about object 1 — the circle:
The circle area i=s 3.141532653528783
The circle diameter i=s 2.0

Dizplavyving information about object 2 — the retangle:
The rectangle area i= 1.0

COP 3330: Classes In Java — Part 2 Page 39 © Dr. Mark Llewellyn




Casting Objects and the instanceof Operator

« The program uses implicit casting to assign a Circle object to
objectl anda Rectangle objectto object?2.

* Inthe displayObject method, explicit casting Is used to cast
the object to Circle If the object Is an instance of Circle,
and the methods getArea and getDiameter are used to
display the area and diameter of the circle.

« Since casting can only be done when the source object is an
Instance of the target class, the code uses the instanceof
operator to ensure that the source object Is an instance of the
target class before performing the casting.

« Explicit casting to Circle and Rectangle IS nhecessary
because the getArea and getDiameter methods are not
available in the Object class.

’

COP 3330: Classes In Java - Part 2 Page 40 © Dr. Mark Llewellyn g").




Casting Objects and the instanceof Operator

« A word of caution regarding the casting operation...

the precedence of the object member access operator
(the period) Is higher than the casting operator. You
must use parentheses to ensure that the casting is done
before the . operation, as In:

((Circle)object) .getAreal());

and not: (Circle)object.getArea() ;

\The method getArea () is not

defined for the type Object

#
COP 3330: Classes In Java — Part 2 Page 41 © Dr. Mark Llewellyn @j




